Restoring the spinal pain gate: GABA(A) receptors as targets for novel analgesics.

نویسندگان

  • Hanns Ulrich Zeilhofer
  • William T Ralvenius
  • Mario A Acuña
چکیده

GABAA receptors (GABA(A)Rs) and glycine receptors are key elements of the spinal control of nociception and pain. Compromised functioning of these two transmitter systems contributes to chronic pain states. Restoring their proper function through positive allosteric modulators should constitute a rational approach to the treatment of chronic pain syndromes involving diminished inhibitory spinal pain control. Although classical benzodiazepines (i.e., full agonists at the benzodiazepine binding site of GABA(A)Rs) potentiate synaptic inhibition in spinal pain controlling circuits, they lack clinically relevant analgesic activity in humans. Recent data obtained from experiments in GABA(A)R point-mutated mice suggests dose-limiting sedative effects of classical nonspecific benzodiazepines as the underlying cause. Experiments in genetically engineered mice resistant to the sedative effects of classical benzodiazepines and studies with novel less sedating benzodiazepines have indeed shown that profound antihyperalgesia can be obtained at least in preclinical pain models. Present evidence suggests that compounds with high intrinsic activity at α2-GABA(A)R and minimal agonistic activity at α1-GABA(A)R should possess relevant antihyperalgesic activity without causing unwanted sedation. On-going preclinical studies in genetically engineered mice and clinical trials with more selective benzodiazepine site agonists should soon provide additional insights into this emerging topic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HZ166, a novel GABAA receptor subtype-selective benzodiazepine site ligand, is antihyperalgesic in mouse models of inflammatory and neuropathic pain.

Diminished GABAergic and glycinergic inhibition in the spinal dorsal horn contributes significantly to chronic pain of different origins. Accordingly, pharmacological facilitation of GABAergic inhibition by spinal benzodiazepines (BDZs) has been shown to reverse pathological pain in animals as well as in human patients. Previous studies in GABA(A) receptor point-mutated mice have demonstrated t...

متن کامل

Purinergic P2 receptors as targets for novel analgesics.

Following hints in the early literature about adenosine 5'-triphosphate (ATP) injections producing pain, an ion-channel nucleotide receptor was cloned in 1995, P2X3 subtype, which was shown to be localized predominantly on small nociceptive sensory nerves. Since then, there has been an increasing number of papers exploring the role of P2X3 homomultimer and P2X2/3 heteromultimer receptors on sen...

متن کامل

P145: The Role of γ-Aminobutyric Acid Receptor in The Social Anxiety Disorder

Social anxiety disorder (SAD) is the one of the most common anxiety disorders. Despite its high prevalence, the disorder is still considerably undiagnosed and untreated. The disease places a massive burden on patient’s lives, affecting not only their social interactions but also their educational and professional activities, thereby constituting a severe disability. γ-aminobutyric acid (GABA) s...

متن کامل

P 107: P2x7 Receptors: as a Novel Targets for the Treatment of Neuroinflammation

P2x7 receptors are Purineric receptors that are extracellular ATP-gated ion channel. These receptors require high dose or prolonged exposure to ATP for initial activation. The Activation of these receptors facilitates the formation of inflammasome which activates caspase 1. The P20 and P10 subunits of caspase 1 form active enzyme that then releases active interleukin (IL)-1 β and IL-18, tu...

متن کامل

The role of GABA in the mediation and perception of pain.

A great deal of effort has been expended in attempting to define the role of GABA in mediating the transmission and perception of pain. Pursuit of this question has been stimulated by the fact that GABAergic neurons are widely distributed throughout the central nervous system, including regions of the spinal cord dorsal horn known to be important for transmitting pain impulses to the brain. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advances in pharmacology

دوره 73  شماره 

صفحات  -

تاریخ انتشار 2015